Copied to
clipboard

G = C823C2order 128 = 27

3rd semidirect product of C82 and C2 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C823C2, C42.658C23, C4.6(C4○D8), (C2×C8).225D4, C4.SD168C2, C4.4D8.4C2, C4⋊Q8.83C22, (C4×C8).371C22, C41D4.44C22, C2.11(C8.12D4), C22.59(C41D4), (C2×C4).715(C2×D4), SmallGroup(128,443)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C823C2
C1C2C22C2×C4C42C4×C8C82 — C823C2
C1C22C42 — C823C2
C1C22C42 — C823C2
C1C22C22C42 — C823C2

Generators and relations for C823C2
 G = < a,b,c | a8=b8=c2=1, ab=ba, cac=a-1b4, cbc=a4b3 >

Subgroups: 224 in 89 conjugacy classes, 36 normal (6 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C42, C4⋊C4, C2×C8, C2×D4, C2×Q8, C4×C8, D4⋊C4, Q8⋊C4, C41D4, C4⋊Q8, C82, C4.4D8, C4.SD16, C823C2
Quotients: C1, C2, C22, D4, C23, C2×D4, C41D4, C4○D8, C8.12D4, C823C2

Smallest permutation representation of C823C2
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 11 57 25 22 41 34 50)(2 12 58 26 23 42 35 51)(3 13 59 27 24 43 36 52)(4 14 60 28 17 44 37 53)(5 15 61 29 18 45 38 54)(6 16 62 30 19 46 39 55)(7 9 63 31 20 47 40 56)(8 10 64 32 21 48 33 49)
(2 21)(3 7)(4 19)(6 17)(8 23)(9 31)(10 55)(11 29)(12 53)(13 27)(14 51)(15 25)(16 49)(20 24)(26 44)(28 42)(30 48)(32 46)(33 35)(34 57)(36 63)(37 39)(38 61)(40 59)(41 54)(43 52)(45 50)(47 56)(58 64)(60 62)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,11,57,25,22,41,34,50)(2,12,58,26,23,42,35,51)(3,13,59,27,24,43,36,52)(4,14,60,28,17,44,37,53)(5,15,61,29,18,45,38,54)(6,16,62,30,19,46,39,55)(7,9,63,31,20,47,40,56)(8,10,64,32,21,48,33,49), (2,21)(3,7)(4,19)(6,17)(8,23)(9,31)(10,55)(11,29)(12,53)(13,27)(14,51)(15,25)(16,49)(20,24)(26,44)(28,42)(30,48)(32,46)(33,35)(34,57)(36,63)(37,39)(38,61)(40,59)(41,54)(43,52)(45,50)(47,56)(58,64)(60,62)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,11,57,25,22,41,34,50)(2,12,58,26,23,42,35,51)(3,13,59,27,24,43,36,52)(4,14,60,28,17,44,37,53)(5,15,61,29,18,45,38,54)(6,16,62,30,19,46,39,55)(7,9,63,31,20,47,40,56)(8,10,64,32,21,48,33,49), (2,21)(3,7)(4,19)(6,17)(8,23)(9,31)(10,55)(11,29)(12,53)(13,27)(14,51)(15,25)(16,49)(20,24)(26,44)(28,42)(30,48)(32,46)(33,35)(34,57)(36,63)(37,39)(38,61)(40,59)(41,54)(43,52)(45,50)(47,56)(58,64)(60,62) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,11,57,25,22,41,34,50),(2,12,58,26,23,42,35,51),(3,13,59,27,24,43,36,52),(4,14,60,28,17,44,37,53),(5,15,61,29,18,45,38,54),(6,16,62,30,19,46,39,55),(7,9,63,31,20,47,40,56),(8,10,64,32,21,48,33,49)], [(2,21),(3,7),(4,19),(6,17),(8,23),(9,31),(10,55),(11,29),(12,53),(13,27),(14,51),(15,25),(16,49),(20,24),(26,44),(28,42),(30,48),(32,46),(33,35),(34,57),(36,63),(37,39),(38,61),(40,59),(41,54),(43,52),(45,50),(47,56),(58,64),(60,62)]])

38 conjugacy classes

class 1 2A2B2C2D4A···4F4G4H4I8A···8X
order122224···44448···8
size1111162···21616162···2

38 irreducible representations

dim111122
type+++++
imageC1C2C2C2D4C4○D8
kernelC823C2C82C4.4D8C4.SD16C2×C8C4
# reps1133624

Matrix representation of C823C2 in GL4(𝔽17) generated by

01100
31100
00130
00013
,
13000
01300
00010
001210
,
1000
11600
0010
00116
G:=sub<GL(4,GF(17))| [0,3,0,0,11,11,0,0,0,0,13,0,0,0,0,13],[13,0,0,0,0,13,0,0,0,0,0,12,0,0,10,10],[1,1,0,0,0,16,0,0,0,0,1,1,0,0,0,16] >;

C823C2 in GAP, Magma, Sage, TeX

C_8^2\rtimes_3C_2
% in TeX

G:=Group("C8^2:3C2");
// GroupNames label

G:=SmallGroup(128,443);
// by ID

G=gap.SmallGroup(128,443);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,736,422,268,1123,136,2804,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^8=c^2=1,a*b=b*a,c*a*c=a^-1*b^4,c*b*c=a^4*b^3>;
// generators/relations

׿
×
𝔽